Robustness Analysis of Uncertain Discrete-Time Systems with Dissipation Inequalities and Integral Quadratic Constraints

نویسندگان

  • Bin Hu
  • Márcio J. Lacerda
  • Peter Seiler
چکیده

This paper presents a connection between dissipation inequalities and integral quadratic constraints (IQCs) for robustness analysis of uncertain discrete-time systems. Traditional IQC results derived from homotopy methods emphasize an operator-theoretic input-output viewpoint. In contrast, the dissipativity-based IQC approach explicitly incorporates the internal states of the uncertain system, thus providing a more direct procedure to analyze uniform stability with non-zero initial states. The standard dissipation inequality requires a non-negative definite storage function and “hard” IQCs. The term “hard” means that the IQCs must hold over all finite time horizons. This paper presents a modified dissipation inequality that requires neither non-negative definite storage functions nor hard IQCs. This approach leads to linear matrix inequality conditions that can provide less conservative results in terms of robustness analysis. The proof relies on a key J-spectral factorization lemma for IQC multipliers. A simple numerical example is provided to demonstrate the utility of the modified dissipation inequality. Copyright c © 0000 John Wiley & Sons, Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite Horizon Robustness Analysis of LTV Systems Using Integral Quadratic Constraints

The goal of this paper is to assess the robustness of an uncertain linear time-varying (LTV) system on a finite time horizon. The uncertain system is modeled as a connection of a known LTV system and a perturbation. The input/output behavior of the perturbation is described by time-domain, integral quadratic constraints (IQCs). Typical notions of robustness, e.g. nominal stability and gain/phas...

متن کامل

New Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays

In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...

متن کامل

Integral Quadratic Constraints

Integral Quadratic Constraints (IQC) are inequalities used to describe (partially) possible signal combinations within a given dynamical system. IQC offer a framework for abstracting ”challenging” (e.g. non-linear, time-varying, uncertain, or distributed) elements of dynamical system models to aid in rigorous analysis of robust stability and performance (more specifically, to establish L2 gain ...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

Admissibility analysis for discrete-time singular systems with time-varying delays by adopting the state-space Takagi-Sugeno fuzzy model

This paper is pertained with the problem of admissibility analysis of uncertain discrete-time nonlinear singular systems by adopting the state-space Takagi-Sugeno fuzzy model with time-delays and norm-bounded parameter uncertainties. Lyapunov Krasovskii functionals are constructed to obtain delay-dependent stability condition in terms of linear matrix inequalities, which is dependent on the low...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016